Organoids for studying (personalised) antiviral treatments

00:525 months ago

Giulia is a scientist in clinical virology with a PhD from OrganoVIR Labs at Amsterdam UMC. Her research aims to improve antiviral testing using human organoids—tiny, lab-grown tissues that mimic real human organs. The COVID-19 pandemic highlighted the urgent need for effective antiviral treatments, as traditional pre-clinical testing on animal models has only a 5% success rate in clinical trials. By utilising human organoids, Giulia enhances the accuracy of antiviral research. She specializes in infecting organoids from the airway, gut, and brain with various patient-derived viruses, allowing for more realistic modelling of viral infections. Her work also sets the stage for personalised medicine in the context of viral infections. By isolating viruses and stem cells from patients suffering from severe infections, she can test tailored treatments that are more likely to succeed. With this, she aims to revolutionise antiviral testing and improve treatment outcomes for patients.

Click on the info button for the full version of the video.

Related

VHP4Safety project
Projects and initiatives
HealthToxicologyIn vitroIn silico

VHP4Safety project

This video explains how we are developing the Virtual Human Platform to improve safety assessment with human-relevant data and models. VHP4Safety (https://vhp4safety.nl/) - the Virtual Human Platform for safety assessment - is a research project funded by the Dutch Research Council (NWO) program entitled the ‘Dutch Research Agenda: Research on Routes by Consortia (NWA-ORC).’ With a budget of over 10 million Euros, the project started on June 1, 2021 and will last for the duration of 5 years.
03:1634 hours ago
AI agents for safer science: How AI is Changing Chemical Risk Assessment
Innovation examples
HealthToxicologyIn silico

AI agents for safer science: How AI is Changing Chemical Risk Assessment

This video introduces a novel approach to chemical safety, where intelligent digital agents guided by large language models support scientists in making faster, more transparent decisions. By automating complex workflows and integrating tools like the OECD QSAR Toolbox, these agentic systems help prioritise research, reduce reliance on animal testing, and pave the way for safer, more sustainable innovation.
02:569 days ago
User Research in developing the virtual human platform
Innovation examples
ToxicologyPolicy

User Research in developing the virtual human platform

Digital tools can support the phasing out of animal-based tests and data in chemical risk assessment. This is one of the core promises of the Virtual Human Platform. The potential contribution of digitalization is linked to the acceptance and adoption of tools, methods, and data by stakeholders in several societal sectors. To facilitate the integration of stakeholders in the configuration of digital tools, Dr. Isaac Ortega Alvarado and colleagues gather insights from risk assessors in their role as users. Risk assessors are the ones who actualize chemical risk assessment and its standards through their practices. With this perspective, this research contributes to understanding the development and implementation of digital tools as embedded in social processes of construction and reception.
01:1531 days ago
Pro tips for making a video about your research
TPI.tv videos
Beginner

Pro tips for making a video about your research

Need some pro-tips to make your next video on animal-free innovations? Aniek and Victoria got some for you! In this video, they share why you should want to make a video about your research, tips about the content and format of an attractive video, and how to best share your video.
03:2531 days ago