GUTS BV - small intestine-on-a-chip and advanced computational analysis for compound and protein screening

02:113 years ago

GUTS BV is a contract research organization offering its 3-dimensional state-of-the-art small intestinal in vitro model in combination with custom computational analysis approaches. The small intestinal model was developed during Dr. Paul Jochems PhD research at Utrecht University in the group of Prof. Roos Masereeuw. In comparison to the current gold standard (Transwell model), they show improvement in cell differentiation (all major specialized cell types present), physiological structure (3D tube- and villi-like structures) and a functional epithelial barrier. After acquiring experimental data from this model computational analysis approaches are used to score and compare measured compounds for all tested biological parameters at once. The combined effort of improved in vitro modelling and data analysis is believed to result in an enhanced preclinical predictability.

GUTS BV was nominated for the Venture Challenge 2021 for their development of an intestinal model combined with advanced computational analysis for protein and chemical compound screening.

Research papers:
https://www.sciencedirect.com/science/article/pii/S0887233318307811
https://www.mdpi.com/2072-6643/12/9/2782/htm
https://www.nature.com/articles/s41538-020-00082-z

LinkedIn: https://www.linkedin.com/company/71016128/

Related

TPI.tv: improving science through animal-free innovations and research
TPI.tv videos
InnovationPolicyBeginner

TPI.tv: improving science through animal-free innovations and research

Introducing TPI.tv : a video platform by experts striving to improve science through animal-free innovations and research.
01:264 years ago
Five simple tricks for making your own video for TPI.tv
TPI.tv videos

Five simple tricks for making your own video for TPI.tv

This video shows you how to make a video yourself. It's really not that difficult! See also the submission page (https://tpi.tv/submit-a-video) for additional information.
01:234 years ago
User Research in developing the virtual human platform
Innovation examples
ToxicologyPolicy

User Research in developing the virtual human platform

Digital tools can support the phasing out of animal-based tests and data in chemical risk assessment. This is one of the core promises of the Virtual Human Platform. The potential contribution of digitalization is linked to the acceptance and adoption of tools, methods, and data by stakeholders in several societal sectors. To facilitate the integration of stakeholders in the configuration of digital tools, Dr. Isaac Ortega Alvarado and colleagues gather insights from risk assessors in their role as users. Risk assessors are the ones who actualize chemical risk assessment and its standards through their practices. With this perspective, this research contributes to understanding the development and implementation of digital tools as embedded in social processes of construction and reception.
01:157 days ago
NXTGEN Hightech Biomed
Projects and initiatives
HealthInnovationIn vitroOrgan-on-Chip

NXTGEN Hightech Biomed

The Netherlands has strong academic knowledge in areas like Lab-on-Chip, Organ-on-Chip, artificial organs, and cell production technology. However, turning this knowledge into actual products is challenging due to the need for collaboration between different technological and biological specialists. The NXTGEN Hightech program (https://nxtgenhightech.nl/en/biomed/) addresses this by creating a collaborative environment where companies from various fields work together. This approach aims to transform academic insights into innovative products, benefiting both the industry and society.
02:178 days ago