Helpathon #4 - can you help Anne-Marie?

01:389 months ago
Can you help Anne-Marie develop a more organ-like Rhesus 3D liver model in which she can study the dormancy and the waking up of malaria parasites? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Anne- Marie Zeeman is a researcher at the Biomedical Primate Research Center (BPRC). Anne-Marie studies recurrent malaria ( P. vivax). She successfully developed a single cell layer in vitro model to study compounds affecting dormant and active malaria parasites in the liver of Rhesus monkeys. We believe that the cross correlation between in vitro Rhesus and in vitro human models will provide the missing link required to improve the drug development process and aid transition. A more refined Rhesus in vitro model can reduce the number of monkeys currently used for testing drugs. The data from in vivo monkeys combined with new in vitro models could help validate and develop reliable human in vitro models making testing on monkeys unnecessary detours.

Related

Helpathon #4 - can you help Raissa?
Meeting videos
HelpathonsIn vitro

Helpathon #4 - can you help Raissa?

Can you help Raissa find a more complex organoid-like brain and immune model based on rhesus microglia to study aging in relation to neuroinflammation and neurodegenerative diseases? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Raissa Timmerman is a PhD student at the alternative unit at the Biomedical Primate Research Center. A better understanding of aging of the brain is key to studying neuroinflammation and neurodegenerative diseases. We believe there is a potential for breakthrough in using our existing live macaque data obtained from past aging experiments to develop more complex in vitro rhesus brain-like models and then to correlate all this data with data from human in vitro models and human live data.
01:329 months ago
Helpathon #4 - can you help Frank?
Meeting videos
HelpathonsHealth

Helpathon #4 - can you help Frank?

Can you help Frank with integrating an immune system into a macaque lung organoid to address local immunity to tuberculosis with his vaccination strategy? Join Helpathon #4, look at www.tpihelpathon.nl/coming-up ! Frank Verreck does research on tuberculosis at the Biomedical Primate Research Center (BPRC). Tuberculosis is the most deadly infectious disease worldwide! For the past hundred years, BCG (Bacillus Calmette Guérin) vaccinations take place through the skin. Research shows that macaques can be better protected from this infection by vaccination through their lungs. Frank really wants to further study the potential of this alternative vaccination strategy. He wants to understand how this BCG vaccination works in macaques lungs.
01:219 months ago
Sign in for Helpathon #3: Saskia van Mil
Meeting videos
HelpathonsHealth

Sign in for Helpathon #3: Saskia van Mil

Saskia van Mil calls for a Helpathon! She invites you to help her develop a human model for studying liver metabolism? You can sign in for this Helpathon here: tpihelpathon.nl. Online, 18th - 19th of June 2020.
01:1613 months ago
Sign in for Helpathon #3: Daniela Salvatori
Meeting videos
HelpathonsEducationInnovation

Sign in for Helpathon #3: Daniela Salvatori

Daniela Salvatori calls for a Helpathon! She invites you to help her and TPI Utrecht to create a unique master course for animal free innovation. You can sign in for this Helpathon here: tpihelpathon.nl. Online, 18th - 19th of June 2020.
01:2913 months ago

New

FirstbaseBIO - human brain organoids for studying neurological diseases
Innovation examples
HealthInnovationIn vitro

FirstbaseBIO - human brain organoids for studying neurological diseases

Human neurological diseases are still poorly understood, amongst others because animals are used as a model for the human brain. A way to overcome this problem is to mimic human brain functioning in a dish with organoids. FirstbaseBIO is developing off-the-shelf brain organoids on which neurological diseases can be studied. This 3D platform will be formed by reprogrammed human cells from easily accessible sources, for example urine, skin, or mucosa. The proof of-concept brain organoids will be those from patients who are suffering from adrenoleukodystrophy (ALD), a rare, incurable brain disease that occurs primarily in young boys and is often fatal. With the brain organoid platform, possible medicinal treatments for ALD can be effectively optimised. FirstbaseBIO was nominated for the Venture Challenge 2021 for their development of human brain organoids to study neurological diseases.
03:336 days ago
GUTS BV - small intestine-on-a-chip and advanced computational analysis for compound and protein screening
Innovation examples
HealthToxicologyIn vitro

GUTS BV - small intestine-on-a-chip and advanced computational analysis for compound and protein screening

GUTS BV is a contract research organization offering its 3-dimensional state-of-the-art small intestinal in vitro model in combination with custom computational analysis approaches. The small intestinal model was developed during Dr. Paul Jochems PhD research at Utrecht University in the group of Prof. Roos Masereeuw. In comparison to the current gold standard (Transwell model), they show improvement in cell differentiation (all major specialized cell types present), physiological structure (3D tube- and villi-like structures) and a functional epithelial barrier. After acquiring experimental data from this model computational analysis approaches are used to score and compare measured compounds for all tested biological parameters at once. The combined effort of improved in vitro modelling and data analysis is believed to result in an enhanced preclinical predictability. GUTS BV was nominated for the Venture Challenge 2021 for their development of an intestinal model combined with advanced computational analysis for protein and chemical compound screening. Research papers: https://www.sciencedirect.com/science/article/pii/S0887233318307811 https://www.mdpi.com/2072-6643/12/9/2782/htm https://www.nature.com/articles/s41538-020-00082-z LinkedIn: https://www.linkedin.com/company/71016128/
02:116 days ago
Avatar Zoo - teaching animal anatomy using virtual reality
Innovation examples
EducationInnovation

Avatar Zoo - teaching animal anatomy using virtual reality

Animals are essential to train the next generation of scientists understand diseases and develop treatments for humans as well as animals. Therefore, animals are used for educational purposes. Technologies such as Virtual Reality and Augmented Reality can be employed to reduce the number of animals in the future. Prof. Dr. Daniela Salvatori is working on the development of 'Avatar Zoo' together with UMCU and IT. Live animals are replaced by holographic 3D in this flexible platform. With these holograms one is able to study the anatomical, physiological and pathological systems and processes of all kinds of animals. Avatar Zoo won the Venture Challenge 2021 for the development of virtual reality models that can be used for anatomy classes and practical training.
02:406 days ago
SMART OoC platform
Projects
InnovationIn vitro

SMART OoC platform

The SMART Organ-on-Chip project aims to bring Organ-on-Chip technology to the next level, out of the pioneering labs to industrial applications. NWO awarded 4.8 million euro to a large and diverse consortium of universities, companies, research institutes and foundations, brought together by hDMT (Dutch Organ-on-Chip Consortium), that will together develop standardized Organ-on-Chip models. These models will be made to fit the scale and quality that pharmaceutical companies need to use them for development of novel drugs, with better science and less animal use as a result. The project will kick off in autumn 2021. More information on the project will follow in the course of 2021.
02:0641 days ago