Scientific solutions for the gap in translational medicine: skin model platform with melanoma (3D melanoma)

03:197 months ago

The developing process of a new drug, from first testing to regulatory approval and ultimately to market is a long, costly, and risky path. Noteworthy is the fact that almost 95% of the drugs that go into human trials fail. According to the National Institutes of Health (NIH), 80 to 90% of drug research projects fail before they ever get tested in humans. The value of preclinical research, mainly conducted in animal model experiments for predicting the effectiveness of therapies and treatment strategies in human trials, has remained controversial. Only 6% of the animal studies are successfully translated into the human response. Breaking down failure rates by therapeutic area, oncology disorders account for 30% of all failures. The absence of human-relevant models with receptors, proteins, and drug interactions in the in situ microenvironment leaves a gap in the scientific discovery process of new therapies. In this context, the present work presents the development of a sophisticated in vitro skin model platform focus on boosting melanoma treatment. The results showed a physiological microenvironment of human skin with epidermal differentiation and development of stratified layers (basement membrane, stratum spinosum, stratum granulosum, and stratum corneum). Furthermore, it was observed the pathophysiological microenvironment of the melanoma with invasion or migration through the basement membrane into the dermis and no epidermal differentiation. Vemurafenib treatment, the gold standard which targets BRAF mutations, showed a decrease in proliferation and invasion of melanoma tumors, with an increase in epidermis keratinization. Melanoma incidence continues to increase year-on-year and is currently responsible for >80% of skin cancer deaths. It is the most common cutaneous form and is known to have the highest mutational load of all cancers. Nowadays, patients with advanced melanoma BRAFV600E mutation can benefit from monotherapies or targeted therapies. Although the initial response rate is effective, disease progression and tumor chemoresistance rapidly occur in the majority of patients. Therefore, the treatment of melanoma remains a challenge, and despite the advances, there is still an urgent need to identify new therapeutic strategies. 3D Model Melanoma is considered one important tool for studying the evolution of the pathology, as well as evaluating the effectiveness of new therapeutic approaches.

Related

Stichting Proefdiervrij: Collaboration is key
Expert interviews
HealthInnovationPolicy

Stichting Proefdiervrij: Collaboration is key

At Stichting Proefdiervrij (the Dutch society for the replacement of animal testing) we believe that collaboration is essential for the development and implementation of animal-free models. In this video we introduce a few of the ways in which we, as an NGO, collaborate with researchers to reach our goal: the complete replacement of all test on animals
02:073 days ago
Debate about animal testing
Meeting videos
HealthInnovationPolicy

Debate about animal testing

Animal testing contributes to advances in medicine and science in general. But in recent years people have increasingly questioned research using laboratory animals. The European Union and the Dutch government want to be a forerunner in the development and use of innovations that do not involve animal testing, but how do we want to achieve that? What are the challenges and opportunities for biomedical sciences? How do we accelerate the transition towards animal-free innovation? And what does this mean for research into better treatments for animals? In this debate Dutch leaders in the field of animal(-free) testing share their thoughts and opinions.
01:274 days ago
PrecisionTox
Projects and initiatives

PrecisionTox

In order to better protect human health and the environment from harmful chemicals, the European chemical agency (ECHA) pursues the objective of "zero tolerance" on non-compliance of chemical registration applications. In this video, scientists of the PrecisionTox project - an EU-funded project aiming to accelerate chemical safety assessment with 3Rs compliant models - explain how New Approach Methods (NAMs) provide rich biological data that can help close the data gap to increase acceptance of chemicals dossier while reducing, replacing and refining animal experimentation.
02:0925 days ago
New approaches for cancer hazard assessment
Innovation examples

New approaches for cancer hazard assessment

Chemical substances are subjected to assessment of genotoxic and carcinogenic effects before being marketed to protect man and the environment from health risks. For cancer hazard assessment, the long-term rodent carcinogenicity study is the current mainstay for the detection of nongenotoxic carcinogens. However, carcinogenicity studies are shown to have prominent weaknesses and are subject to ethical and scientific debate. A transition toward a mechanism-based weight of evidence approach is considered a requirement to enhance the prediction of carcinogenic potential for chemicals. At RIVM, we are working on this alternative approach for cancer hazard assessment, which makes optimal use of innovative (computational) tools and be less animal demanding. For more information, click on the link in the video or read on here (https://doi.org/10.1080/10408444.2020.1841732) and here (https://doi.org/10.1080/10408444.2018.1458818). Contact the expert (https://nl.linkedin.com/in/mirjamluijten)
03:1447 days ago